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In appropriate function space settings, it is proved that the Fourier, Taylor, and
Laurent series projections are minimal in all L p norms (1 ~ P ~ OC». This result
unifies and extends known results for the Fourier, Taylor, and Laurent projections
in Lx and for the Fourier projection in L l' The proof is based on a generalisation
of a kernel summation formula due to Berman.

1. INTRODUCTION

Consider the following general setting. Suppose that v is a pOSitIve
complete measure on a subset S of a domain D invariant with respect to
some group T of automorphisms on S. For each t in T, let E/ be the isometry
on the invariant (w.r.t. E/) subspace X of Lp(S, v), where 1~ P ~ 00, given
by

(EJ)(s) =/(t(s)) (lEX,s E S).

Suppose also that Il is some fixed complete measure on T with the property
that

f Idlll = 1, (1)
T

and that a projection Po (i.e., a bounded, linear, idempotent mapping) is
defined from X into a given subspace Y.
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In this general setting we shall prove that Po is a minimal L p projection
provided that a "generalised Berman kernel formula" holds, and hence that
the classical Fourier, Taylor, and Laurent projections are minimal L p

projections, where, in the case of the Taylor and Laurent projections, L p

norms may be taken over either the complete domain (D) or an interior
circular contour (T).

The Fourier, Taylor, and Laurent series projections fit into the general
setting by making appropriate choices of D, S, T, X, Y, E" V, Ji, and Po as
follows.

Case 1 (Fourier Projections). D= [0,2n], S=D, s=x, T=D,

X: 2n-periodic Lp-integrable functions of x normed in L p on S,

Y: trigonometric polynomials of fixed order n in x (i.e., algebraic
polynomials of degree n in eix and n in e- iX),

(EJ)(s) = f(s + t), dv(x) = dx, dJi(t) = (1/2n) dt,

Pof: partial sum of order n of Fourier series off

Case 2a (Taylor Projection-Domain Norm).

D: Izl~p (O<p< (0), S=D, s=z, T:ltl= 1,

X: functions analytic in the interior of D and continuous on D normed
in L p on S,

Y: algebraic polynomials of fixed degree n in z,

(EJ)(s) =f(ts), dv(z) = dS (element of area), dJi(t) = (1/2ni)(dt/t),

Pof: partial sum of degree n of Taylor series off

Case 2b (Taylor Projection-Contour Norm). The same setting is used
as in Case 2a, except that

S = r: Iz I= Po (Po fixed, 0 <Po ~ p), dv(z) = Idz I·

Case 3a (Laurent Projection-Domain Norm).

D: PI ~Izi <P2 (0 <PI <P2 < (0), S=D, s=z, T: It I= 1,

X: functions analytic in the interior of D and continuous on D normed
in L p on S,

Y: algebraic polynomials of fixed degrees n in z and m in z - I,

(EJ)(s) = f(ts), dv(z) = dS (element of area), dJi(t) =
(1/2ni)(dt/t),

Pof: partial sum of degrees n in z and m in z - I of Laurent series off
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Case 3b (Laurent Projection-Contour Norm). The same setting is used
as in Case 3a, except that

S =r: Izl =Po (Po fixed, PI <'Po <'P2)' dv(z) = Idzl·

2. GENERALISED BERMAN KERNEL FORMULA

LEMMA 2.1. For the Fourier, Taylor, and Laurent projections Po, in the
setting of Section 1,

J (Et-1PEJ)(s) dlJ.(t) = (Pof)(s),
T

(2)

for an arbitrary projection P of X into Y.

This formula was obtained first for the Fourier projection by Berman 111
and, subsequently, for the Taylor projection by Geddes and Mason [2], and
for the Laurent projection by Mason [3]. In each case the formula may be
deduced by showing it to be exact for all elements in a basis for X, namely,

{e ikX
} (k=O, ±1, ±2,... ) in Case 1,

{Zk} (k = 0,1,2'00') in Case 2,

jzk} (k = 0, ± 1, ±2,... ) in Case 3.

3. MINIMAL PROJECTIONS

THEOREM 3.1. Consider the setting of Section 1 for any fixed p
(1 <. P <. ex)) and suppose that the generalized Berman kernel formula (2)
holds for a given projection Po and an arbitrary projection P of X into Y.
Then Po is a minimal projection in the L p norm on S.

COROLLARY 3.2. In the setting of Section 1, the Fourier, Taylor, and
Laurent projections are all minimal L p projections. In the case of Taylor and
Laurent projections, the L p norm may be measured over either the domain D
or the interior circular contour r.

Proof of Corollary 3.2. This follows immediately from Lemma 2.1 and
Theorem 3.1.

Proof of Theorem 3.1. Suppose that (lIp) + (llq) = 1, so that II . lip and
II . Ilqare dual. Then

Ilfllp = sup Jf . h dv.
Ilhllq= I

(3 )
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IIPofllp= rt It (E;lpEJ)(s)d,u(t)I
P

dV(S)f
P

from (2),

~ rt lIT I(E,-1pEJ)(s) I . I d,u(t)1 (P dv(s) riP

= lit I(E/-1pEJ)(s) I . I d,u(t)1L
= sup J' J' I(E; IpEJ)(s) I 'ld,u(t)1 . h(s) dv(s)

Ilhllq=1 S T

by (3).

by (3),

Reversing the integration (by Fubini's theorem):

IIPofilp~ sup f f I(E/-1pEJ)(s)l· h(s)· dv(s) ·Id,u(t)!
Ilhllq=1 T S

= I sup f I(E,-IpEJ)(s)1 h(s) dv(s) Id,u(t)1
T IIhllq= 1 S

= t II(E,-1pEJ)(s)ll pId,u(t)1

~ f IIE,-IIILpIIPllLpIIE,IIL
p

Ilfllp Id,u(t)1
T

= J IIPIILpllfllpld,u(t)1 since IIE/-11ILp=IIE/IIL
p
= 1,

T

= IIPllLpIlfll p by (1).

Hence IIPollLp = sUPllt1lp=IIIPofllp ~ IIPIILp' and the theorem is proved. Q.E.D.

These results were previously known only for particular norms.
Specifically, results in L oo were given for Fourier, Taylor, and Laurent
projections, respectively, by Lozinski [4], Geddes and Mason [2], and
Mason [3]. (There is no proof in Lozinski's paper, but one is given by
Cheney [5].) The corresponding Fourier result in L I was pointed out by
Lozinski [4] and a proof in a more general setting was given by
Lambert [6].
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4. RELATED RESULTS
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Uniqueness questions are not considered here, but some results are already
known. The Fourier projection on trigonometric polynomials is the unique
minimal projection in L oo (Cheney et al. [7]) and in L I (Lambert [6 /).
Moreover, these results hold true for spaces of complex-valued functions as
well as for spaces of real-valued functions.

Generalisations are also possible. For example, Lambert [6] has
generalised the Fourier results in the context of compact Abelian groups.
Moreover, all the results of Sections 2 and 3 may be generalised readily to
multivariate functions on hypercubes (for real variables) or on polydiscs and
polyrings (for complex variables), and a detailed discussion of this topic in
L 00 and L I norms is given by Mason [81.
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