Minimal L_{p} Projections by Fourier, Taylor, and Laurent Series

B. L. Chalmers
Department of Mathematics, University of California, Riverside, California, 92521, U.S.A.
AND
J. C. Mason
Mathematics and Ballistics Branch, Royal Military College of Science, Shrivenham, Swindon, Wiltshire, England
Communicated by Oved Shisha
Received March 8, 1982

Abstract

In appropriate function space settings, it is proved that the Fourier, Taylor, and Laurent series projections are minimal in all L_{p} norms ($1 \leqslant p \leqslant \infty$). This result unifies and extends known results for the Fourier, Taylor, and Laurent projections in L_{∞} and for the Fourier projection in L_{1}. The proof is based on a generalisation of a kernel summation formula due to Berman.

1. Introduction

Consider the following general setting. Suppose that v is a positive complete measure on a subset S of a domain D invariant with respect to some group T of automorphisms on S. For each t in T, let E_{t} be the isometry on the invariant (w.r.t. E_{l}) subspace X of $L_{p}(S, v$), where $1 \leqslant p \leqslant \infty$, given by

$$
\left(E_{t} f\right)(s)=f(t(s)) \quad(f \in X, s \in S) .
$$

Suppose also that μ is some fixed complete measure on T with the property that

$$
\begin{equation*}
\int_{T}|d \mu|=1 \tag{1}
\end{equation*}
$$

and that a projection P_{0} (i.e., a bounded, linear, idempotent mapping) is defined from X into a given subspace Y.

In this general setting we shall prove that P_{0} is a minimal L_{p} projection provided that a "generalised Berman kernel formula" holds, and hence that the classical Fourier, Taylor, and Laurent projections are minimal L_{p} projections, where, in the case of the Taylor and Laurent projections, L_{p} norms may be taken over either the complete domain (D) or an interior circular contour (Γ).

The Fourier, Taylor, and Laurent series projections fit into the general setting by making appropriate choices of $D, S, T, X, Y, E_{t}, v, \mu$, and P_{0} as follows.

Case 1 (Fourier Projections). $\quad D=[0,2 \pi], S=D, s=x, T=D$,
$X: \quad 2 \pi$-periodic L_{p}-integrable functions of x normed in L_{p} on S,
$Y: \quad$ trigonometric polynomials of fixed order n in x (i.e., algebraic polynomials of degree n in $e^{i x}$ and n in $\left.e^{-i x}\right)$, $\left(E_{t} f\right)(s)=f(s+t), d \nu(x)=d x, d \mu(t)=(1 / 2 \pi) d t$,
$P_{0} f: \quad$ partial sum of order n of Fourier series of f.
Case 2a (Taylor Projection-Domain Norm).
$D: \quad|z| \leqslant \rho(0<\rho<\infty), S=D, s=z, T:|t|=1$,
$X: \quad$ functions analytic in the interior of D and continuous on D normed in L_{p} on S,
$Y: \quad$ algebraic polynomials of fixed degree n in z,

$$
\left(E_{t} f\right)(s)=f(t s), d v(z)=d S \text { (element of area) }, d \mu(t)=(1 / 2 \pi i)(d t / t)
$$

$P_{0} f: \quad$ partial sum of degree n of Taylor series of f.
Case 2b (Taylor Projection-Contour Norm). The same setting is used as in Case 2a, except that

$$
S=\Gamma:|z|=\rho_{0}\left(\rho_{0} \text { fixed, } 0<\rho_{0} \leqslant \rho\right), d v(z)=|d z| .
$$

Case 3a (Laurent Projection-Domain Norm).
$D: \quad \rho_{1} \leqslant|z|<\rho_{2}\left(0<\rho_{1}<\rho_{2}<\infty\right), S=D, s=z, T:|t|=1$,
X : functions analytic in the interior of D and continuous on D normed in L_{p} on S,
$Y: \quad$ algebraic polynomials of fixed degrees n in z and m in z^{-1}, $\left(E_{t} f\right)(s)=f(t s), \quad d v(z)=d S \quad$ (element of area),$\quad d \mu(t)=$ $(1 / 2 \pi i)(d t / t)$,
$P_{0} f: \quad$ partial sum of degrees n in z and m in z^{-1} of Laurent series of f.

Case 3b (Laurent Projection-Contour Norm). The same setting is used as in Case 3a, except that

$$
S=\Gamma:|z|=\rho_{0}\left(\rho_{0} \text { fixed, } \rho_{1} \leqslant \rho_{0} \leqslant \rho_{2}\right), d v(z)=|d z| .
$$

2. Generalised Berman Kernel Formula

Lemma 2.1. For the Fourier, Taylor, and Laurent projections P_{0}, in the setting of Section 1 ,

$$
\begin{equation*}
\int_{T}\left(E_{t}^{-1} P E_{t} f\right)(s) d \mu(t)=\left(P_{0} f\right)(s), \tag{2}
\end{equation*}
$$

for an arbitrary projection P of X into Y.
This formula was obtained first for the Fourier projection by Berman [1] and, subsequently, for the Taylor projection by Geddes and Mason [2], and for the Laurent projection by Mason [3]. In each case the formula may be deduced by showing it to be exact for all elements in a basis for X, namely,

$$
\begin{aligned}
\left\{e^{i k x}\right\} & (k=0, \pm 1, \pm 2, \ldots) \text { in Case } 1 \\
\left\{z^{k}\right\} & (k=0,1,2, \ldots) \quad \text { in Case } 2 \\
\left\{z^{k}\right\} & (k=0, \pm 1, \pm 2, \ldots) \text { in Case } 3 .
\end{aligned}
$$

3. Minimal Projections

Theorem 3.1. Consider the setting of Section 1 for any fixed p $(1 \leqslant p \leqslant \infty)$ and suppose that the generalized Berman kernel formula (2) holds for a given projection P_{0} and an arbitrary projection P of X into Y. Then P_{0} is a minimal projection in the L_{p} norm on S.

Corollary 3.2. In the setting of Section 1, the Fourier, Taylor, and Laurent projections are all minimal L_{p} projections. In the case of Taylor and Laurent projections, the L_{p} norm may be measured over either the domain D or the interior circular contour Γ.

Proof of Corollary 3.2. This follows immediately from Lemma 2.1 and Theorem 3.1.

Proof of Theorem 3.1. Suppose that $(1 / p)+(1 / q)=1$, so that $\|\cdot\|_{p}$ and $\|\cdot\|_{q}$ are dual. Then

$$
\begin{equation*}
\|f\|_{D}=\sup _{\|h\|_{q}=1} \int f \cdot h d v \tag{3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\left\|P_{0} f\right\|_{p} & =\left[\int_{S}\left|\int_{T}\left(E_{t}^{-1} P E_{t} f\right)(s) d \mu(t)\right|^{p} d v(s)\right]^{1 / p} \quad \text { from (2) } \\
& \leqslant\left[\left.\left.\int_{S}\left|\int_{T}\right|\left(E_{t}^{-1} P E_{t} f\right)(s)|\cdot| d \mu(t)\right|^{p} d v(s)\right|^{1 / p}\right. \\
& =\left\|\int_{T}\left|\left(E_{t}^{-1} P E_{t} f\right)(s)\right| \cdot|d \mu(t)|\right\|_{p} \\
& =\sup _{\|h\|_{q}=1} \int_{S} \int_{T}\left|\left(E_{t}^{-1} P E_{t} f\right)(s)\right| \cdot|d \mu(t)| \cdot h(s) d v(s) \quad \text { by }(3)
\end{aligned}
$$

Reversing the integration (by Fubini's theorem):

$$
\begin{aligned}
\left\|P_{0} f\right\|_{p} & \leqslant \sup _{\|h\|_{q}=1} \int_{T} \int_{S}\left|\left(E_{t}^{-1} P E_{t} f\right)(s)\right| \cdot h(s) \cdot d v(s) \cdot|d \mu(t)| \\
& =\int_{T\|h\|_{q}=1} \sup _{S}\left|\left(E_{t}^{-1} P E_{t} f\right)(s)\right| h(s) d v(s)|d \mu(t)| \\
& =\int_{T}\left\|\left(E_{t}^{-1} P E_{t} f\right)(s)\right\|_{p}|d \mu(t)| \quad \text { by }(3) \\
& \leqslant \int_{T}\left\|E_{t}^{-1}\right\|_{L_{p}}\|P\|_{L_{p}}\left\|E_{t}\right\|_{L_{p}}\|f\|_{p}|d \mu(t)| \\
& =\int_{T}\|P\|_{L_{p}}\|f\|_{p}|d \mu(t)| \quad \text { since }\left\|E_{t}^{-1}\right\|_{L_{p}}=\left\|E_{t}\right\|_{L_{p}}=1 \\
& =\|P\|_{L_{p}}\|f\|_{p} \quad \text { by }(1)
\end{aligned}
$$

Hence $\left\|P_{0}\right\|_{L_{p}}=\sup _{\|f\|_{p}=1}\left\|P_{0} f\right\|_{p} \leqslant\|P\|_{L_{p}}$, and the theorem is proved. Q.E.D.
These results were previously known only for particular norms. Specifically, results in L_{∞} were given for Fourier, Taylor, and Laurent projections, respectively, by Lozinski [4], Geddes and Mason [2], and Mason [3]. (There is no proof in Lozinski's paper, but one is given by Cheney [5].) The corresponding Fourier result in L_{1} was pointed out by Lozinski [4] and a proof in a more general setting was given by Lambert [6].

4. Related Results

Uniqueness questions are not considered here, but some results are already known. The Fourier projection on trigonometric polynomials is the unique minimal projection in L_{∞} (Cheney et al. [7]) and in L_{1} (Lambert $|6|$). Moreover, these results hold true for spaces of complex-valued functions as well as for spaces of real-valued functions.

Generalisations are also possible. For example, Lambert [6] has generalised the Fourier results in the context of compact Abelian groups. Moreover, all the results of Sections 2 and 3 may be generalised readily to multivariate functions on hypercubes (for real variables) or on polydiscs and polyrings (for complex variables), and a detailed discussion of this topic in L_{∞} and L_{1} norms is given by Mason [8].

References

1. D. L. Berman, On the impossibility of constructing a linear operator furnishing an approximation within the order of the best approximation, Dokl. Akad. Nauk. SSSR 120 (1958), 1175-1177. [Russian]
2. K. O. Geddes and J. C. Mason, Polynomial approximations by projections on the unit circle, SIAM J. Numer. Anal. 12 (1975), 111-120.
3. J. C. Mason, Near-best L_{∞} and L_{1} approximations to analytic functions on twodimensional regions, in "Multivariate Approximation" (D. C. Handscomb, Ed.), pp. 115-135, Academic Press, London, 1978.
4. S. M. Lozinski, On a class of linear operators, Dokl. Akad. Nauk. SSSR 61 (1948), 193-196. |Russian|
5. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
6. P. V. Lambert, On the minimum norm property of the Fourier projection in L^{\prime}-spaces, Bull. Soc. Math. Belg. 21 (1969), 370-391.
7. E. W. Cheney, C. R. Hobby, P. D. Morris, F. Schurer, and D. E. Wulbert, On the minimal property of the Fourier projection, Trans. Amer. Math. Soc. 143 (1969), 249-258.
8. J. C. Mason, Minimal projections and near-best approximations by multivariate polynomial expansion and interpolation, in "Multivariate Approximation Theory II" (W. Schempp and K. Zeller, Eds.), pp. 241-254, Internat. Ser. Numer. Math. No. 61, Birkhäuser Verlag, Basel, 1982.
